
malignant lymphomas, and 1 29 (1 23 to 1 35) for all
tumour types.

Comment
We found no trend in risk of childhood leukaemia

over the three defined birth cohorts. The low increase
in risk seen for all tumour types combined since the
1940s has been described before5 and is due mainly to
continuous increases in risk of lymphomas in boys and
ofneuroblastomas in both sexes.
The comparison group in this study comprised

children who were born before vitamin K was
routinely given to the mother or child. Thus the trend
in risk for childhood cancer, and for leukaemia in
particular, seems to have been unaffected by the
widespread use of intramuscular vitamin K since the
early 1970s. Our findings are not consistent with those

of Golding et al.I The findings would agree if the
prevalance of a strong risk factor for leukaemia were
decreasing in parallel to the increasing use of intra-
muscular vitamin K. This, however, seems unlikely.
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Statistics Notes

Correlation, regression, and repeated data

J Martin Bland, Douglas G Altman

In clinical research we are often able to take several
measurements on the same patient. The correct analysis
of such data is more complex than if each patient were
measured once. This is because the variability of
measurements made on different subjects is usually
much greater than the variability between measure-
ments on the same subject, and we must take both
kinds of variability into account. For example, we may
want to investigate the relation between two variables
and take several pairs of readings from each of a group
of subjects. Such data violate the assumption of
independence inherent in many analyses, such as t tests
and regression.

Researchers sometimes put all the data together, as if
they were one sample. Most statistics textbooks do not
warn the researcher not to do this. It is so ingrained in
statisticians that this is a bad idea that it never occurs to
them that anyone would do it.

Consider the following example. The data were
generated from random numbers, and there is no
relation betweenX and Y at all. Firstly, values ofX and
Y were generated for each "subject," then a further
random number was added to make the individual
"observation." The data are shown in the table and
figure. For each subject separately the correlation
between X and Y is not significant. We have only five
subjects and so only five points. Using each subject's
mean values, we get the correlation coefficient r=--067,
df=3, P=0-22. However, if we put all 25 observations
together we get r--047, df-23, P-002. Even

Simulated data showingfive pairs ofmeasurements oftwo uncorrelated
variablesfor subjects 1, 2, 3, 4, and 5

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

48 58 63 28 38 40 51 46 55 62
56 53 74 24 56 41 46 36 51 50
49 44 69 26 46 40 36 41 54 66
38 53 55 19 43 41 49 43 46 51
50 56 73 22 52 34 46 45 55 52

Subject mean 48 2 52-8 66-8 23-8 47 0 39-2 45-6 42-2 52-2 56-2

Correlation --0-02 r0-32 r-0 30 r-0-37 r0-55
coefficient P-097 P-0 59 P-0-63 P-0 55 P-0 33
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Simulated dataforfive pairs ofmeasurement oftwo uncorrelated
variables (X andY) forfive subjects

though this correlation coefficient is smaller than that
between means, because it is based on 25 pairs of
observations rather than five it becomes significant.
The calculation is performed as ifwe have 25 subjects,
and so the number of degrees of freedom for the
significance test is increased incorrectly and a spurious
significant difference is produced. The extreme case
would occur ifwe had only two subjects, with repeated
pairs of observations on each. We would have two
separate clusters of points centred at the subjects'
means. We would get a high correlation coefficient,
which would appear significant despite there being no
relation whatsoever.
There are two simple ways to approach these types of

data. If we want to know whether subjects with a high
value ofXtend also to have a high value ofYwe can use
the subject means and find the correlation between
them. For different numbers of observations for each
subject, we can use a weighted analysis, weighting by
the number of observations for the subject. If we want
to know whether changes in one variable in the same
subject are paralleled by changes in the other we can
estimate the relation within subjects using multiple
regression. In either case we should not mix obser-
vations from different subjects indiscriminately,
whether using correlation or the closely related re-
gression analysis.
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